Linear Parabolic Stochastic PDE's and Wiener Chaos
نویسنده
چکیده
We study Cauchy’s problem for a second-order linear parabolic stochastic partial differential equation (SPDE) driven by a cylindrical Brownian motion. Existence and uniqueness of a generalized (soft) solution is established in Sobolev, Hölder, and Lipschitz classes. We make only minimal assumptions, virtually identical to those common to similar deterministic problems. A stochastic Feynman–Kac formula for the soft solution is also derived. It is shown that the soft solution allows a Wiener chaos expansion and that the coefficients of this expansion can be computed recursively by solving a simple system of parabolic PDEs.
منابع مشابه
ar X iv : 0 70 6 . 23 90 v 1 [ m at h . PR ] 1 6 Ju n 20 07 STOCHASTIC PARABOLIC EQUATIONS OF FULL SECOND ORDER
A procedure is described for defining a generalized solution for stochastic differential equations using the Cameron-Martin version of the Wiener Chaos expansion. Existence and uniqueness of this Wiener Chaos solution is established for parabolic stochastic PDEs such that both the drift and the diffusion operators are of the second order.
متن کاملA Multistage Wiener Chaos Expansion Method for Stochastic Advection-Diffusion-Reaction Equations
Using Wiener chaos expansion (WCE), we develop numerical algorithms for solving second-order linear parabolic stochastic partial differential equations (SPDEs). We propose a deterministic WCE-based algorithm for computing moments of the SPDE solutions without any use of the Monte Carlo technique. We also compare the proposed deterministic algorithm with two other numerical methods based on the ...
متن کاملStochastic Partial Differential Equations Driven by Purely Spatial Noise
We study bilinear stochastic parabolic and elliptic PDEs driven by purely spatial white noise. Even the simplest equations driven by this noise often do not have a square-integrable solution and must be solved in special weighted spaces. We demonstrate that the Cameron–Martin version of the Wiener chaos decomposition is an effective tool to study both stationary and evolution equations driven b...
متن کاملar X iv : m at h / 05 05 55 1 v 2 [ m at h . PR ] 1 6 Ju n 20 07 STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY PURELY SPATIAL NOISE
We study stochastic parabolic and elliptic PDEs driven by purely spatial white noise. Even the simplest equations driven by this noise often do not have a square-integrable solution and must be solved in special weighted spaces. We demonstrate that the Cameron-Martin version of the Wiener chaos decomposition is an effective tool to study both stationary and evolution equations driven by space-o...
متن کامل8 Stochastic Partial Differential Equations Driven by Purely Spatial Noise
We study bilinear stochastic parabolic and elliptic PDEs driven by purely spatial white noise. Even the simplest equations driven by this noise often do not have a square-integrable solution and must be solved in special weighted spaces. We demonstrate that the Cameron-Martin version of the Wiener chaos decomposition is an effective tool to study both stationary and evolution equations driven b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998